3.3 V Differential 1:21 Differential Fanout Clock Driver with HCSL level Output

NB4N121K

Description

The NB4N121K is a Clock differential input fanout distribution 1 to 21 HCSL level differential outputs, optimized for ultra low propagation delay variation. The NB4N121K is designed with HCSL clock distribution for FBDIMM applications in mind.

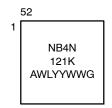
Inputs can accept differential LVPECL, CML, or LVDS levels. Single–ended LVPECL, CML, LVCMOS or LVTTL levels are accepted with the proper V_{REFAC} supply (see Figures 5, 10, 11, 12, and 13). Clock input pins incorporate an internal 50 Ω on die termination resistors.

Output drive current at I_{REF} (Pin 1) for 1X load is selected by connecting to GND. To drive a 2X load, connect I_{REF} to V_{CC} . See Figure 9.

The NB4N121K specifically guarantees low output-to-output skews. Optimal design, layout, and processing minimize skew within a device and from device to device. System designers can take advantage of the NB4N121K's performance to distribute low skew clocks across the backplane or the motherboard.

Features

- Typical Input Clock Frequency 100, 133, 166, 200, 266, 333 and 400 MHz
- 340 ps Typical Rise and Fall Times
- 800 ps Typical Propagation Delay
- Δtpd 100 ps Maximum Propagation Delay Variation Per Each Differential Pair
- Additive Phase RMS Jitter: 1 ps Max
- Operating Range: $V_{CC} = 3.0 \text{ V}$ to 3.6 V with $V_{EE} = 0 \text{ V}$
- Differential HCSL Output Level (700 mV Peak-to-Peak)
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

www.onsemi.com

QFN-52 MN SUFFIX CASE 485M

MARKING DIAGRAM*

A = Assembly Site
 WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

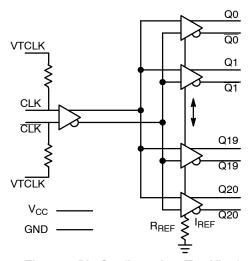


Figure 1. Pin Configuration (Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

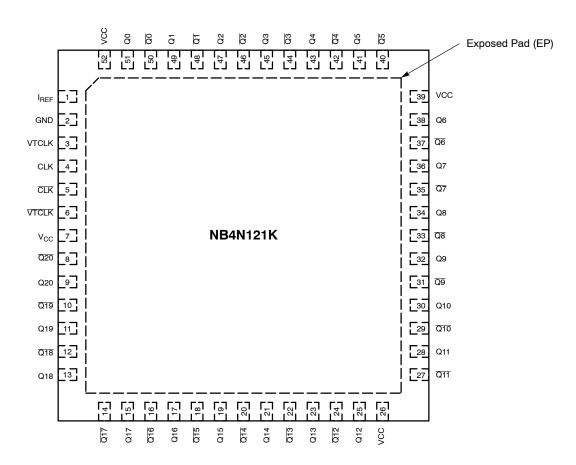


Figure 2. Pinout Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	I/O	Description
1	I _{REF}	Output	Output current programming pin to select load drive. For 1X configuration, connect I_{REF} to GND, or for 2X configuration, connect I_{REF} to V_{CC} (See Figure 9).
2	GND	-	Supply Ground. GND pin must be externally connected to power supply to guarantee proper operation.
3, 6	VTCLK, VTCLK	-	Internal 50 Ω Termination Resistor connection Pins. In the differential configuration when the input termination pins are connected to the common termination voltage, and if no signal is applied then the device may be susceptible to self-oscillation.
4	CLK	LVPECL Input	CLOCK Input (TRUE)
5	CLK	LVPECL Input	CLOCK Input (INVERT)
7, 26, 39, 52	V _{CC}	-	Positive Supply pins. V_{CC} pins must be externally connected to a power supply to guarantee proper operation.
8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 29, 31, 33, 35, 37, 40, 42, 44, 46, 48, 50	Q[20-0]	HCSL Output	Output (INVERT)
9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 51	Q[20-0]	HCSL Output	Output (TRUE)
Exposed Pad	EP	GND	Exposed Pad. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a sufficient heat-sinking conduit for proper thermal operation. (Note 1)

^{1.} The exposed pad must be connected to the circuit board ground.

Table 2. ATTRIBUTES

Characteristic	Value
Input Default State Resistors	None
ESD Protection Human Body Model Machine Model	>2 kV 400 V
Moisture Sensitivity (Note 2) QFN-52	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	622
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

^{2.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS (Note 3)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		4.6	V
VI	Positive Input	GND = 0 V		$GND - 0.3 \leq V_I \leq V_{CC}$	V
V _{INPP}	Differential Input Voltage CLK - CLKb			V _{CC}	V
l _{OUT}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range	QFN-52		-40 to +70	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 Ifpm 500 Ifpm	QFN-52 QFN-52	25 19.6	°C/W
θЈС	Thermal Resistance (Junction-to-Case)	2S2P (Note 4)	QFN-52	21	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

3. JEDEC standard 51–6, multilayer board – 2S2P (2 signal, 2 power).

4. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS ($V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $+70 ^{\circ}\text{C}$ Note 5)

Symbol	Characteristic		Тур	Max	Unit
I _{GND}	GND Supply Current (All Outputs Loaded)	70	98	120	mA
I _{CC}	Power Supply Current (All Outputs Loaded) 1X 2X		420 780		mA
I _{IH}	Input HIGH Current CLKx, CLKx		2.0	150	μΑ
I _{IL}	Input LOW Current CLKx, CLKx	-150	-2.0		μΑ

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Figures 5 and 7)

V _{th}	Input Threshold Reference Voltage Range (Note 6)	1050	V _{CC} – 150	mV
V _{IH}	Single-Ended Input HIGH Voltage	V _{th} + 150	V _{CC}	mV
V_{IL}	Single-Ended Input LOW Voltage	GND	V _{th} – 150	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 6 and 8)

V _{IHD}	Differential Input HIGH Voltage	1200	V _{CC}	mV
V _{ILD}	Differential Input LOW Voltage	GND	V _{CC} – 75	mV
V_{ID}	Differential Input Voltage (V _{IHD} – V _{ILD})	75	2400	mV
V _{CMR}	Input Common Mode Range	1163	V _{CC} - 75	

HCSL OUTPUTS (Figure 4)

V _{OH}	Output HIGH Voltage	600	740	900	mV
V _{OL}	Output LOW Voltage	-150	0	150	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

^{5.} Input parameters vary 1:1 with V_{CC} . Measurements taken with outputs in either 1X (all outputs loaded 50 Ω to GND) or 2X (all outputs loaded 25 Ω to GND) configuration, see Figure 9. For 1X configuration, connect $_{IREF}$ to GND, or for 2X configuration, connect $_{IREF}$ to V_{CC} .

^{6.} V_{th} is applied to the complementary input when operating in single ended mode.

Table 5. AC CHARACTERISTICS $V_{CC} = 3.0 \text{ V}$ to 3.6 V, GND = 0 V; -40°C to $+70^{\circ}\text{C}$ (Note 7)

Symbol	Characteristic	Min	Тур	Max	Unit
V _{OUTPP}	Output Voltage Amplitude (@ $V_{INPPmin}$)		725 725 725	900 900 900	mV
t _{PLH} , t _{PHL}	Propagation Delay to (See Figure 3) CLK/CLK to Qx/Qx	550	800	950	ps
Δt _{PLH} , Δt _{PHL}	Propagation Delay Variations Variation Per Each Diff Pair CLK/CLK to Qx/Qx (Note 8) (See Figure 3)			100	ps
tskew	Duty Cycle Skew (Note 9) Within–Device Skew, 1X Mode Only (Note 10) Within–Device Skew, 2X Mode (Note 10) Device–to–Device Skew (Note 10)			20 50 80 150	ps ps ps ps
t _{jit(φ)}	Additive RMS Phase RMS (Note 11) f _{in} =133 MHz to 200 MHz			1	ps
V _{cross}	Absolute Crossing Magnitude Voltage	250		550	mV
ΔV_{cross}	Variation in Magnitude of V _{cross}			150	mV
t _r , t _f	Absolute Magnitude in Output Risetime and Falltime Qx, $\overline{\text{Qx}}$ (From 175 mV to 525 mV)	175	340	700	ps
Δt _{r,} Δt _f	Variation in Magnitude of Risetime and Falltime (Single-Ended) Qx, Qx (See Figure 4) 1X 2X			125 150	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 7. Measured by forcing V_{INPP} (MIN) from a 50% duty cycle clock source. Measurements taken with outputs in either 1X (all outputs loaded 50 Ω to GND) or 2X (all outputs loaded 25 Ω to GND) configuration, see Figure 9. For 1X configuration, connect I_{REF} to GND, or for 2X configuration, connect I_{REF} to V_{CC}. Typical gain is 20 dB.
- 8. Measured from the input pair crosspoint to each single output pair crosspoint across temp and voltage ranges.
- 9. Duty cycle skew is measured between differential outputs using the deviations of the sum of Tpw- and Tpw+.
- 10. Skew is measured between outputs under identical transition @ 133 MHz.
- 11. Additive RMS jitter with 50% duty cycle clock signal using phase noise integrated from 12 KHz to 33 MHz



Figure 3. AC Reference Measurement

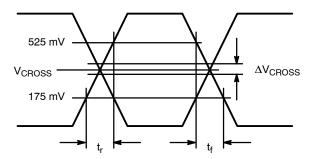


Figure 4. HCSL Output Parameter Characteristics

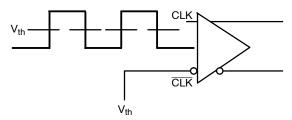


Figure 5. Differential Input Driven Single-Ended ($V_{th} = V_{REFAC}$)

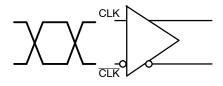


Figure 6. Differential Inputs Driven Differentially

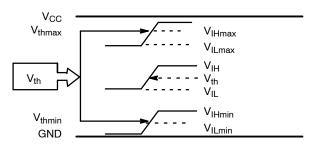


Figure 7. V_{th} Diagram

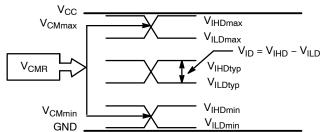


Figure 8. V_{CMR} Diagram

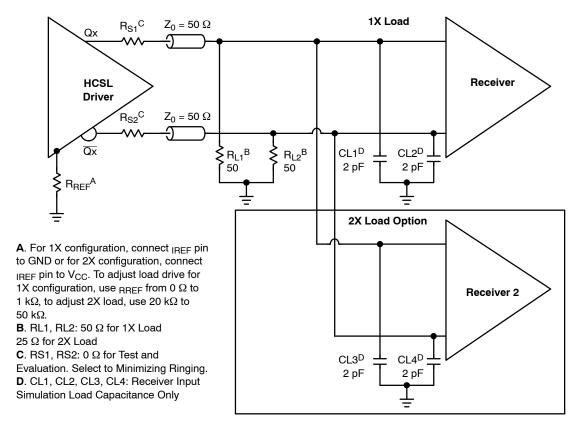
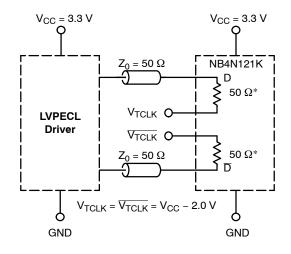
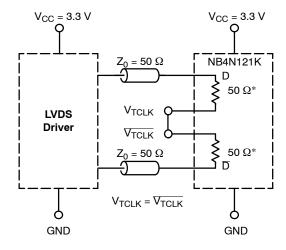
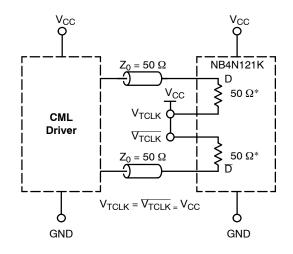
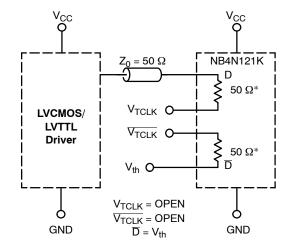




Figure 9. Typical Termination Configuration for Output Driver and Device Evaluation C_{Lx} for Test Only (Representing Receiver Input Loading); Not Added to Application


*RTIN, Internal Input Termination Resistor


Figure 10. LVPECL Interface

*RTIN, Internal Input Termination Resistor

Figure 11. LVDS Interface

*RTIN, Internal Input Termination Resistor

*RTIN, Internal Input Termination Resistor

Figure 12. Standard 50 Ω Load CML Interface

Figure 13. LVCMOS/LVTTL Interface

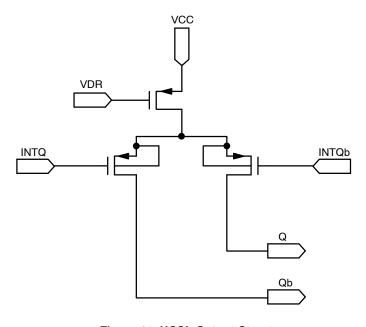
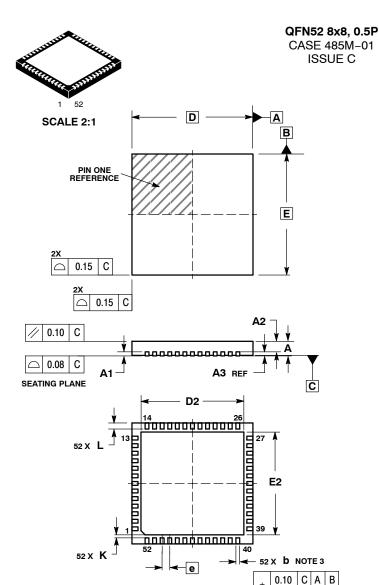



Figure 14. HCSL Output Structure

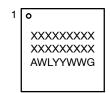
ORDERING INFORMATION

Device	Package	Shipping [†]
NB4N121KMNR2G	QFN-52 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

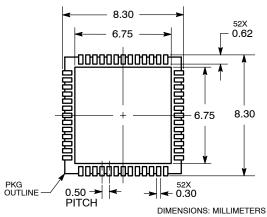
DATE 16 FEB 2010

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS

 3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.


	MILLIMETERS				
DIM	MIN	MAX			
Α	0.80	1.00			
A1	0.00	0.05			
A2	0.60	0.80			
A3	0.20 REF				
b	0.18	0.30			
D	8.00	BSC			
D2	6.50	6.80			
E	8.00	BSC			
E2	6.50	6.80			
е	0.50 BSC				
K	0.20				
L	0.30	0.50			

GENERIC MARKING DIAGRAM

XXXXXXXXX = Device Code = Assembly Site = Wafer Lot WL YY = Year WW = Work Week G = Pb-Free Package

RECOMMENDED SOLDERING FOOTPRINT

DOCUMENT NUMBER:	98AON12057D	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	52 PIN QFN, 8X8, 0.5P		PAGE 1 OF 1	

0.05 С

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative