

RoHS

COMPLIANT HALOGEN

FREE

High Voltage Surface Mount Input Rectifier Diode, 8 A

PRIMARY CHARACTERISTICS					
I _{F(AV)} 8 A					
V_{R}	1600 V				
V _F at I _F	1.1 V				
I _{FSM}	150 A				
T _J max.	150 °C				
Package	DPAK (TO-252AA)				
Circuit configuration	Single				

FEATURES

- Glass passivated pellet chip junction
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified
- Meets JESD 201 class 2 whisker test
- Flexible solution for reliable AC power rectification
- High surge, low V_F rugged blocking diode for DC charging stations
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- On-board and off-board EV / HEV battery chargers
- Renewable energy inverters

DESCRIPTION

The VS-8EWS16SLHM3 rectifier high voltage series has been optimized for very low forward voltage drop, with moderate leakage.

The **high reverse voltage** range available allows design of input stage primary rectification with **outstanding voltage surge** capability.

OUTPUT CURRENT IN TYPICAL APPLICATIONS							
APPLICATIONS SINGLE-PHASE BRIDGE THREE-PHASE BRIDGE UNITS							
NEMA FR-4 or G10 glass fabric-based epoxy with 4 oz. (140 µm) copper	1.2	1.6	٨				
Aluminum IMS, R _{thCA} = 15 °C/W	2.5	2.8	Α				
Aluminum IMS with heatsink, R _{thCA} = 5 °C/W	5.5	6.5					

Note

T_A = 55 °C, T_J = 125 °C, footprint 300 mm²

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS VALUES UNITS							
I _{F(AV)}	Sinusoidal waveform	8	A					
V _{RRM}		1600	V					
I _{FSM}		150	А					
V _F	8 A, T _J = 25 °C	1.10	V					
T _J		-40 to +150	°C					

VOLTAGE RATINGS							
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} AT 150 °C mA				
VS-8EWS16SLHM3	1600	1700	0.5				

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum average forward current	I _{F(AV)}	T_C = 105 °C, 180° conduction half sine wave	8			
Maximum peak one cycle	l	10 ms sine pulse, rated V _{RRM} applied	125	Α		
non-repetitive surge current	I _{FSM}	10 ms sine pulse, no voltage reapplied	150]		
Maximum I ² t for fusing	I ² t	10 ms sine pulse, rated V _{RRM} applied	78	A ² s		
Waximum I-t for fusing	1-1	10 ms sine pulse, no voltage reapplied 110		A-5		
Maximum I ² √t for fusing	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied	1100	A²√s		

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL TEST CONDITIONS VALUES UNITS				
Maximum forward voltage drop	V_{FM}	8 A, T _J = 25 °C		1.1	V
Forward slope resistance	r _t	T _{.1} = 150 °C		20	mΩ
Threshold voltage	V _{F(TO)}	1J = 150 C		0.82	V
Maximum reverse leakage current		T _J = 25 °C	V - Poted V	0.05	mA
iviaximum reverse reakage current	I _{RM}	T _J = 150 °C	V _R = Rated V _{RRM}	0.50	IIIA

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum junction and storage temperature range	T _J , T _{Stg}		-40 to +150	°C		
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	2.5	°C/W		
Typical thermal resistance, junction to ambient (PCB mount)	R _{thJA} ⁽¹⁾		62	C/VV		
Approximate weight			1	g		
Approximate weight			0.03	oz.		
Marking device		Case style DPAK (TO-252AA)	8EWS	16SH		

Note

⁽¹⁾ When mounted on 1" square (650 mm²) PCB of FR-4 or G-10 material 4 oz. (140 µm) copper 40 °C/W

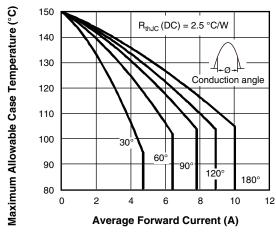


Fig. 1 - Current Rating Characteristics

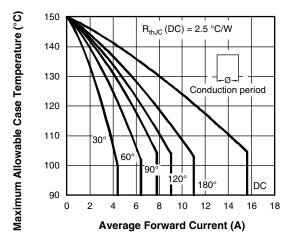


Fig. 2 - Current Rating Characteristics

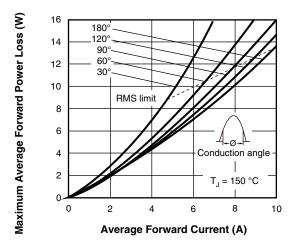


Fig. 3 - Forward Power Loss Characteristics

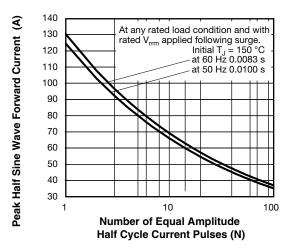


Fig. 5 - Maximum Non-Repetitive Surge Current

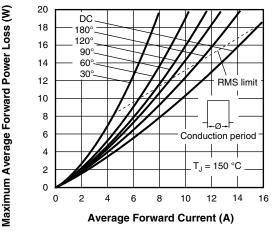


Fig. 4 - Forward Power Loss Characteristics

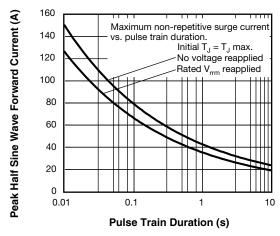


Fig. 6 - Maximum Non-Repetitive Surge Current

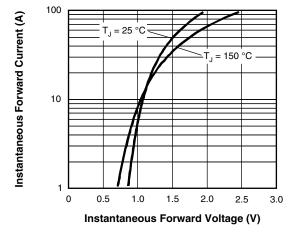


Fig. 7 - Forward Voltage Drop Characteristics

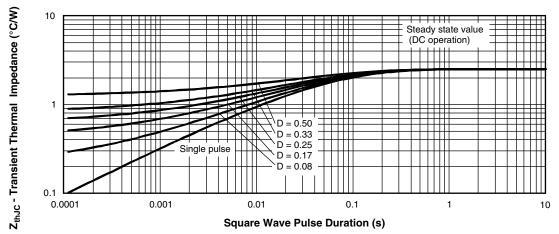


Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code	VS-	8	Е	W	S	16	S	L	Н	М3
	1	2	3	4	5	6	7	8	9	10

Vishay Semiconductors product

2 - Current rating (8 = 8 A)

Circuit configuration:

E = single

4 - Package:

W = DPAK (TO-252AA)

5 - Type of silicon:

S = standard recovery rectifier

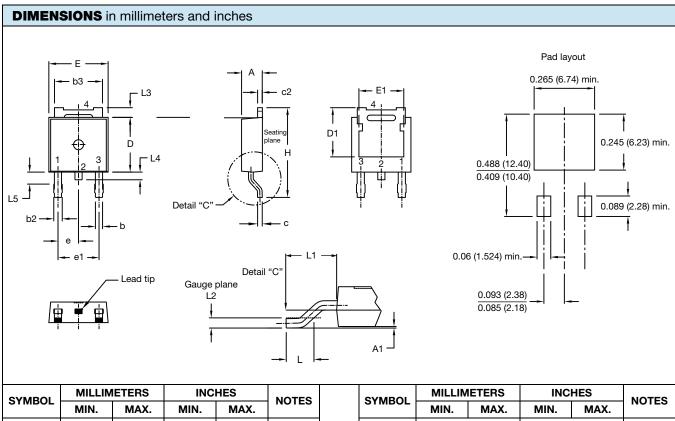
6 - Voltage code x 100 = V_{RRM} (16 = 1600 V)

7 - S = surface mountable

L = tape and reel (left oriented), for different orientation contact factory

9 - H = AEC-Q101 qualified

10 - Environmental digit:


M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-8EWS16SLHM3	3000	3000	13" diameter reel			

LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95519</u>				
Part marking information	www.vishay.com/doc?95518			
Packaging information	www.vishay.com/doc?96495			
SPICE model	www.vishay.com/doc?96960			

DPAK (TO-252AA)

SYMBOL	MILLIM	IETERS	INC	HES	NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	2.18	2.39	0.086	0.094	
A1	-	0.13	=	0.005	
b	0.64	0.89	0.025	0.035	
b2	0.76	1.14	0.030	0.045	
b3	4.95	5.46	0.195	0.215	3
С	0.46	0.61	0.018	0.024	
c2	0.46	0.89	0.018	0.035	
D	5.97	6.22	0.235	0.245	5
D1	4.93	-	0.194	-	3
Е	6.35	6.73	0.250	0.265	5
E1	4.32	-	0.170	-	3

SYMBOL	MILLIM	IETERS	INC	HES	NOTES
STIVIBUL	MIN.	MAX.	MIN.	MAX.	NOTES
е	2.29	BSC	0.090	BSC	
Н	9.40	10.41	0.370	0.410	
L	1.40	1.78	0.055	0.070	
L1	2.74 BSC		0.108	REF.	
L2	0.51	BSC	0.020	BSC	
L3	0.89	1.27	0.035	0.050	3
L4	-	1.02	-	0.040	
L5	1.14	1.52	0.045	0.060	2

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension uncontrolled in L5
- (3) Dimension D1, E1, L3 and b3 establish a minimum mounting surface for thermal pad
- (4) Dimensions D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (5) Outline conforms to JEDEC® outline TO-252AA, except for D1 dimension

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.