

SN74AXC1T45 SCES882D - DECEMBER 2017 - REVISED OCTOBER 2021

SN74AXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Voltage **Translation**

1 Features

- Up and down translation across 0.65 V to 3.6 V
- Operating temperature: -40°C to +125°C
- Designed with glitch suppression circuitry to improve power sequencing performance
- Maximum quiescent current ($I_{CCA} + I_{CCB}$) of 10 μA (85°C maximum) and 16 µA (125°C maximum)
- Up to 500-Mbps support when translating from 1.8 to 3.3V
- V_{CC} isolation feature:
 - If either V_{CC} input is below 100 mV, all I/Os outputs are disabled and become highimpedance
- I_{off} supports partial-power-down mode operation
- Latch-up performance exceeds 100 mA per JESD 78. Class II
- ESD protection exceeds JESD 22
 - 8000-V human body model
 - 1000-V charged-device model

2 Applications

- Enterprise and communications
- Industrial
- Personal electronics

3 Description

The SN74AXC1T45 is a single-bit noninverting bus transceiver that uses two separate configurable power-supply rails. The device is operational with both V_{CCA} and V_{CCB} supplies as low as 0.65 V. The A port is designed to track V_{CCA}, which accepts any supply voltage from 0.65 V to 3.6 V. The B port is designed to track V_{CCB}, which also accepts any supply voltage from 0.65 V to 3.6 V.

The DIR pin determines the direction of signal propagation. With the DIR pin configured HIGH, translation is from Port A to Port B. With DIR configured LOW, translation is from Port B to Port A. The DIR pin is referenced to V_{CCA}, meaning that its logic-high and logic-low thresholds track with V_{CCA}.

This device is fully specified for partial-power-down applications using the I_{off} current. The I_{off} protection circuitry ensures that no excessive current is drawn from or to an input, output, or combined I/O that is biased to a specific voltage while the device is powered down.

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} is less than 100 mV, both I/O ports enter a high-impedance state by disabling their outputs.

The glitch suppression circuitry enables either supply rail to be powered on or off in any order, providing robust power sequencing performance.

Device Information

		· -						
PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE (NOM)						
SN74AXC1T45DBV	SOT-23 (6)	2.90 mm × 1.60 mm						
SN74AXC1T45DCK	SC70 (6)	2.00 mm × 1.25 mm						
SN74AXC1T45DRL	SOT-5X3 (6)	1.60 mm × 1.20 mm						
SN74AXC1T45DEA	X2SON (6)	1.00 mm × 1.00 mm						
SN74AXC1T45DTQ	X2SON (6)	1.00 mm × 0.80 mm						

For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1 Features1	8.3 Feature Description	.17
2 Applications1	8.4 Device Functional Modes	
3 Description1	9 Application and Implementation	
4 Revision History2	9.1 Application Information	
5 Pin Configuration and Functions3	9.2 Typical Applications	
6 Specifications4	10 Power Supply Recommendations	
6.1 Absolute Maximum Ratings4	10.1 Power-Up Considerations	
6.2 ESD Ratings4	11 Layout	
6.3 Recommended Operating Conditions5	11.1 Layout Guidelines	22
6.4 Thermal Information5	11.2 Layout Example	22
6.5 Electrical Characteristics6	12 Device and Documentation Support	
6.6 Switching Characteristics7	12.1 Documentation Support	
6.7 Operating Characteristics: T _A = 25°C11	12.2 Receiving Notification of Documentation Updates	
6.8 Typical Characteristics12	12.3 Support Resources	23
7 Parameter Measurement Information15	12.4 Trademarks	.23
7.1 Load Circuit and Voltage Waveforms15	12.5 Electrostatic Discharge Caution	
8 Detailed Description17	12.6 Glossary	
8.1 Overview	13 Mechanical, Packaging, and Orderable	
8.2 Functional Block Diagram17	Information	23
· ·		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision C (September 2020) to Revision D (October 2021)	Page
•	Updated the Pin Configuration and Functions section to include DRL and DEA packages	3
CI	hanges from Revision B (June 2018) to Revision C (September 2020)	Page
•	Updated the numbering format for tables, figures and cross-references throughout the document	1
•	Updated all the tables to newest 3d table format	1
<u>.</u>	Updated I _{CCA} , I _{CCB} , and I _{CCA} + I _{CCB} to reflect updated performance of device	6
C	hanges from Revision A (April 2018) to Revision B (June 2018)	Page
•	Added DEA and DTQ as active package options	1
•	Changed product status from Production Mix to Production Data	
C	hanges from Revision * (December 2017) to Revision A (April 2018)	Page
•	Added pinout drawing for DEA package	3
	Added pinout drawing for DTQ package	

5 Pin Configuration and Functions

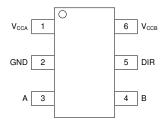


Figure 5-1. DBV Package 6-Pin SOT-23 Top View

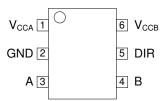


Figure 5-3. DRL Package 6-Pin SOT-5X3 Top View

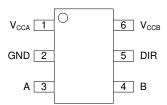


Figure 5-2. DCK Package 6-Pin SC70 Top View

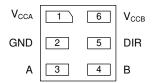


Figure 5-4. DEA Package 6-Pin X2SON Transparent Top View

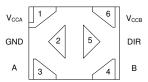


Figure 5-5. DTQ Package 6-Pin X2SON Transparent Top View

Table 5-1. Pin Functions

P	IN	TYPE	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
A	3	I/O	Input or output A. This pin is referenced to V_{CCA} . When this pin is configured as an input, do not leave it floating.
В	4	I/O	Input or output B. This pin is referenced to V _{CCB} . When this pin is configured as an input, do not leave it floating.
DIR	5	I	Direction control signal. Set to Logic High for A-to-B level translation. Set to Logic Low for B-to-A level translation.
GND	2	_	Ground.
V _{CCA}	1	_	A-port supply voltage. $0.65 \text{ V} \leq \text{V}_{\text{CCA}} \leq 3.6 \text{ V}.$
V _{CCB}	6	_	B-port supply voltage. 0.65 V ≤ V _{CCB} ≤ 3.6 V.

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V_{CCA}	Supply voltage A		-0.5	4.2	V
V _{CCB}	Supply voltage B		-0.5	4.2	V
		I/O Ports (A Port)	-0.5	4.2	
VI	Input Voltage ⁽²⁾	I/O Ports (B Port)	-0.5	4.2	V
		Control Inputs	-0.5	4.2	
.,	Valle as a smalled to a survey the state being increased as a survey of state (2)	A Port	-0.5	4.2	V
Vo	Voltage applied to any output in the high-impedance or power-off state ⁽²⁾	B Port	-0.5	4.2	V
.,	Valle are applied to a record to the bight on level state (2) (3)	A Port	-0.5	V _{CCA} + 0.2	V
Vo	Voltage applied to any output in the high or low state ^{(2) (3)}	B Port	-0.5	V _{CCB} + 0.2	V
I _{IK}	Input clamp current	V _I < 0	-50		mA
I _{OK}	Output clamp current	V _O < 0	-50		mA
Io	Continuous output current		-50	50	mA
	Continuous current through V _{CC} or GND		-100	100	mA
TJ	Junction Temperature			150	°C
T _{STG}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.

6.2 ESD Ratings

			VALUE	UNIT
V		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±8000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	, v

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1) (2) (3)

				MIN	MAX	UNIT
V _{CCA}	Supply voltage A			0.65	3.6	V
V _{CCB}	Supply voltage B			0.65	3.6	V
			V _{CCI} = 0.65 V - 0.75 V	V _{CCI} x 0.70		
			V _{CCI} = 0.76 V - 1 V	V _{CCI} x 0.70		
		Data Inputs	V _{CCI} = 1.1 V - 1.95 V	V _{CCI} x 0.65		
			V _{CCI} = 2.3 V - 2.7 V	1.6		
.,	Llink lavalinavkvaltava		V _{CCI} = 3 V - 3.6 V	2		V
V _{IH}	High-level input voltage		V _{CCA} = 0.65 V - 0.75 V	V _{CCA} x 0.70		V
			V _{CCA} = 0.76 V - 1 V	V _{CCA} x 0.70		
		Control Input (DIR) Referenced to V _{CCA}	V _{CCA} = 1.1 V - 1.95 V	V _{CCA} x 0.65		
		Troidicitoed to VCCA	V _{CCA} = 2.3 V - 2.7 V	1.6		
			V _{CCA} = 3 V - 3.6 V	2		
			V _{CCI} = 0.65 V - 0.75 V		V _{CCI} x 0.30	
			V _{CCI} = 0.76 V - 1 V		V _{CCI} x 0.30	
		Data Inputs	V _{CCI} = 1.1 V - 1.95 V		V _{CCI} x 0.35	
			V _{CCI} = 2.3 V - 2.7 V		0.7	
	Law lavel input valtage		V _{CCI} = 3 V - 3.6 V		0.8	V
V _{IL}	Low-level input voltage		V _{CCA} = 0.65 V - 0.75 V		V _{CCA} x 0.30	V
			V _{CCA} = 0.76 V - 1 V		V _{CCA} x 0.30	
		Control Input (DIR) Referenced to V _{CCA}	V _{CCA} = 1.1 V - 1.95 V		V _{CCA} x 0.35	
		Treferenced to VCCA	V _{CCA} = 2.3 V - 2.7 V		0.7	
			V _{CCA} = 3 V - 3.6 V		0.8	
VI	Input voltage (3)	•		0	3.6	V
.,	Output voltage	Active State		0	V _{CCO}	V
√ _o	Output voltage	Tri-State		0	3.6	V
∆t/Δv	Input transition rate				100	ns/V
T _A	Operating free-air tempe	rature		-40	125	°C

- (1)
- VCCI is the VCC associated with the input port. VCCO is the VCC associated with the output port.
- All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

6.4 Thermal Information

		SN74AXC1T45												
	THERMAL METRIC(1)	DBV (SOT-23)	DCK (SC70)	DRL (SOT-5X3)	DEA (X2SON)	DTQ (X2SON)	UNIT							
		6 PINS	6 PINS	6 PINS	6 PINS	6 PINS								
$R_{\theta JA}$	Junction-to-ambient thermal resistance	202.2	235.3	298.9	358.0	327.8	°C/W							
R _{θJC(top)}	Junction-to-case (top) thermal resistance	137.2	160.5	148.4	201.0	194.9	°C/W							
$R_{\theta JB}$	Junction-to-board thermal resistance	80.2	76.9	165.0	221.8	248.4	°C/W							
ΨЈТ	Junction-to-top characterization parameter	64.0	59.7	20.7	26.1	24.1	°C/W							
Ψ_{JB}	Junction-to-board characterization parameter	80.4	77.1	164.9	220.8	247.6	°C/W							

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted) (1) (2)

						Operating free-air temperature (T _A)								
PA	RAMETER	TEST	CONDITIONS	V _{CCA}	V _{CCB}	-40°	C to 85°	°C	-40°0	C to 125	5°C	UN T		
						MIN	TYP ⁽³⁾	MAX	MIN	TYP	MAX	'		
			Ι _{ΟΗ} = -100 μΑ	0.7 V - 3.6 V	0.7 V - 3.6 V	V _{CCO} – 0.1			V _{CCO} – 0.1					
			I _{OH} = -50 μA	0.65 V	0.65 V	0.55			0.55					
			I _{OH} = -200 μA	0.76 V	0.76 V	0.58			0.58			ĺ		
	High-level		I _{OH} = -500 μA	0.85 V	0.85 V	0.65			0.65			ĺ		
/ _{OH}	output voltage	$V_I = V_{IH}$	I _{OH} = -3 mA	1.1 V	1.1 V	0.85			0.85			٧		
			I _{OH} = -6 mA	1.4 V	1.4 V	1.05			1.05			ĺ		
			I _{OH} = -8 mA	1.65 V	1.65 V	1.2			1.2					
			I _{OH} = -9 mA	2.3 V	2.3 V	1.75			1.75			ĺ		
			I _{OH} = -12 mA	3 V	3 V	2.3			2.3					
			I _{OL} = 100 μA		0.7 V - 3.6 V			0.1			0.1			
			I _{OL} = 50 μA	0.65 V	0.65 V			0.1			0.1			
			I _{OL} = 200 μA	0.76 V	0.76 V			0.18			0.18			
	L ove lovel		I _{OL} = 500 μA	0.85 V	0.85 V			0.2			0.2	ĺ		
V _{OL} cow-level output voltage	Low-level	$V_I = V_{IL}$	I _{OL} = 3 mA	1.1 V	1.1 V			0.25			0.25	\		
	output voltage		I _{OL} = 6 mA	1.4 V	1.4 V			0.35			0.35			
			I _{OL} = 8 mA	1.65 V	1.65 V			0.45			0.45			
			I _{OL} = 9 mA	2.3 V	2.3 V			0.55			0.55	ĺ		
			I _{OL} = 12 mA	3 V	3 V			0.7			0.7	ĺ		
	Input leakage	Control inp V _{CCA} or GN	ut (DIR): V _I = ND	0.65 V- 3.6 V	0.65 V- 3.6 V	-1		1	-1.5		1.5	μ		
l	current	A or B Port	t: Vi = V _{CCI} or	0.65 V- 3.6 V	0.65 V- 3.6 V	-4		4	-8		8	μ. 		
_	Partial power	A or B Port	t: Vi or Vo = 0 V -	0 V	0 V - 3.6 V	-5		5	-7.5		7.5	μ		
off	down current	3.6 V		0 V - 3.6 V	0 V	-5		5	-7.5		7.5	μ. 		
	.,	., .,		0.65 V- 3.6 V	0.65 V- 3.6 V			8			12	ĺ		
CCA	V _{CCA} supply current	V _I = V _{CCI} or GND	I _O = 0	0 V	3.6 V	-2			-8			μ.		
				3.6 V	0 V			2			8			
		., .,		0.65 V- 3.6 V	0.65 V- 3.6 V			8			12			
ССВ	V _{CCB} supply current	V _I = V _{CCI} or GND	I _O = 0	0 V	3.6 V			2			8	μ.		
				3.6 V	0 V	-2			-8					
CCA +	Combined supply current	V _I = V _{CCI} or GND	I _O = 0	0.65 V- 3.6 V	0.65 V- 3.6 V			10			16	μ		
Ç _i	Control input capacitance	V _I = 3.3 V or GND		3.3 V	3.3 V		4.4			4.4		р		
Pio Pio	Data I/O capacitance, A Port	V _O = 1.65\\dBm sine v	/ DC +1 MHz -16 vave	3.3 V	0 V		5			5		р		
C _{IO}	Data I/O capacitance, B Port	V _O = 1.65\ dBm sine v	/ DC +1 MHz -16 vave	0 V	3.3 V		5			5		р		

⁽¹⁾ (2)

VCCI is the VCC associated with the input port. VCCO is the VCC associated with the output port.

All typical data is taken at 25°C.

6.6 Switching Characteristics

Table 6-1. Switching Characteristics, $V_{CCA} = 0.7 \text{ V}$

									В	-PORT S	SUPPLY	VOLTAG	E (V _{CCB})															
PARAMETER	FROM	то	TEST CONDITIONS	0.7 ± 0.	05 V	0.8 ± 0.	04 V	0.9 ± 0.	045 V	1.2 ± 0).1 V	1.5 ± 0).1 V	1.8 ± 0	.15 V	2.5 ± 0	.2 V	3.3 ± 0	.3 V	UNIT								
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX									
	Α	В	–40°C to 85°C	0.5	173	0.5	117	0.5	85	0.5	51	0.5	50	0.5	53	0.5	65	0.5	143									
t _{nd} Propagation delay	^		-40°C to 125°C	0.5	173	0.5	117	0.5	85	0.5	51	0.5	50	0.5	53	0.5	65	0.5	143	ns								
t _{pd} Propagation delay	В	Α	–40°C to 85°C	0.5	173	0.5	154	0.5	127	0.5	88	0.5	83	0.5	82	0.5	80	0.5	80	115								
			–40°C to 125°C	0.5	173	0.5	154	0.5	127	0.5	88	0.5	83	0.5	82	0.5	80	0.5	80									
	DIR	Α	–40°C to 85°C	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143									
t _{dis} Disable time		DIR A	DIK A	–40°C to 125°C	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	0.5	143	ns							
t _{dis} Disable time	DIR B	–40°C to 85°C	0.5	163	0.5	123	0.5	100	0.5	50	0.5	45	0.5	49	0.5	61	0.5	109	115									
		–40°C to 125°C	0.5	163	0.5	123	0.5	100	0.5	50	0.5	45	0.5	49	0.5	61	0.5	109										
	DIR	DIR	DID	DID	DIP	DIP	DIP A			-	–40°C to 85°C	0.5	389	0.5	331	0.5	287	0.5	143	0.5	134	0.5	137	0.5	147	0.5	200	
t _{en} Enable time	DIK	DIR A	–40°C to 125°C	0.5	406	0.5	333	0.5	287	0.5	143	0.5	134	0.5	137	0.5	147	0.5	200									
t _{en} Enable time	DIR B	DIR B	DIR	DID B	DID B	–40°C to 85°C	0.5	369	0.5	313	0.5	281	0.5	247	0.5	246	0.5	249	0.5	261	0.5	339	ns					
				DIR	DIR	DIR	DIR B	DIR B	DIR B	–40°C to 125°C	0.5	395	0.5	339	0.5	307	0.5	273	0.5	272	0.5	275	0.5	287	0.5	365		

Table 6-2. Switching Characteristics, $V_{CCA} = 0.8 \text{ V}$

									В		SUPPLY	VOLTAG	E (V _{CCB})												
PARAMETER	FROM	то	TEST CONDITIONS	0.7 ± 0.	05 V	0.8 ± 0.	04 V	0.9 ± 0.0	045 V	1.2 ± 0).1 V	1.5 ± 0).1 V	1.8 ± 0.	15 V	2.5 ± 0	.2 V	3.3 ± 0	.3 V	UNIT						
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX							
	Α	В	–40°C to 85°C	0.5	153	0.5	95	0.5	64	0.5	33	0.5	27	0.5	26	0.5	27	0.5	36							
t Propagation dolay	Α	В	–40°C to 125°C	0.5	153	0.5	95	0.5	64	0.5	33	0.5	27	0.5	26	0.5	27	0.5	36	no						
t _{pd} Propagation delay	В	А	–40°C to 85°C	0.5	117	0.5	96	0.5	78	0.5	52	0.5	42	0.5	41	0.5	40	0.5	39	ns						
	ь	В А	–40°C to 125°C	0.5	117	0.5	96	0.5	78	0.5	52	0.5	42	0.5	41	0.5	40	0.5	39							
	DIR A	DIR A		–40°C to 85°C	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100						
t _{dis} Disable time			_ A	–40°C to 125°C	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100	0.5	100	no					
t _{dis} Disable time	DIR B	DIR	DIR	DIR	DIR	DIR B	DIR B	DIR B	–40°C to 85°C	0.5	151	0.5	111	0.5	88	0.5	38	0.5	32	0.5	30	0.5	30	0.5	38	ns
							DIR	DIR	DIR	DIR	DIR	DIR	DIR	В	–40°C to 125°C	0.5	151	0.5	111	0.5	88	0.5	38	0.5	32	0.5
	DIB		–40°C to 85°C	0.5	321	0.5	261	0.5	226	0.5	96	0.5	80	0.5	78	0.5	76	0.5	87							
t _{en} Enable time	DIR	DIR	DIR	DIR A	DIR A	–40°C to 125°C	0.5	341	0.5	266	0.5	229	0.5	97	0.5	80	0.5	78	0.5	76	0.5	87	no			
t _{en} Enable time	DIR	DIR	DIR	В	–40°C to 85°C	0.5	309	0.5	251	0.5	220	0.5	189	0.5	183	0.5	182	0.5	183	0.5	192	ns				
				DIR	DIR	DIR	DIR	DIR	DIR		–40°C to 125°C	0.5	317	0.5	259	0.5	228	0.5	197	0.5	191	0.5	190	0.5	191	0.5

Table 6-3. Switching Characteristics, $V_{CCA} = 0.9 \text{ V}$

								<u> </u>				VOLTA	GE (V _C	св)											
PARAMETER	FROM	то	TEST CONDITIONS	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± (0.1 V	1.5 ± (0.1 V	1.8 ± 0	.15 V	2.5 ± 0).2 V	3.3 ± 0).3 V	UNIT					
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX						
	Α	В	–40°C to 85°C	0.5	126	0.5	78	0.5	52	0.5	23	0.5	18	0.5	16	0.5	15	0.5	18						
Propagation			–40°C to 125°C	0.5	126	0.5	78	0.5	52	0.5	23	0.5	18	0.5	16	0.5	15	0.5	18	1					
t _{pd} delay	od delay B	Α	–40°C to 85°C	0.5	85	0.5	64	0.5	53	0.5	40	0.5	28	0.5	24	0.5	22	0.5	21	ns					
	Ь	_ A	–40°C to 125°C	0.5	85	0.5	64	0.5	53	0.5	40	0.5	28	0.5	24	0.5	22	0.5	21						
	DIB	Α	–40°C to 85°C	0.5	75	0.5	75	0.5	75	0.5	75	0.5	75	0.5	75	0.5	75	0.5	75						
t _{dis} Disable time	DIR	A	^	–40°C to 125°C	0.5	79	0.5	79	0.5	79	0.5	79	0.5	79	0.5	79	0.5	79	0.5	79	ns				
t _{dis} Disable time	DIB	DIR B	–40°C to 85°C	0.5	144	0.5	105	0.5	82	0.5	32	0.5	25	0.5	24	0.5	21	0.5	23	115					
	DIR	DIR	DIR	DIR	DIR	DIR	DIR B	–40°C to 125°C	0.5	144	0.5	105	0.5	83	0.5	36	0.5	28	0.5	26	0.5	21	0.5	23	
	DID	DIP	DID A	DID A	DID A		–40°C to 85°C	0.5	282	0.5	223	0.5	195	0.5	77	0.5	59	0.5	54	54 0.5 48 0.5	54				
en Enable time –	DIK	DIR A	–40°C to 125°C	0.5	304	0.5	229	0.5	199	0.5	81	0.5	62	0.5	56	0.5	49	0.5	54	ns					
t _{en} Enable time	DIR	DIR	DIP B	–40°C to 85°C	0.5	262	0.5	214	0.5	188	0.5	159	0.5	154	0.5	152	0.5	151	0.5	154	115				
			DIR	DIR B	DIR B	–40°C to 125°C	0.5	269	0.5	221	0.5	195	0.5	166	0.5	161	0.5	159	0.5	158	0.5	161			

Table 6-4. Switching Characteristics, V_{CCA} = 1.2 V

									R_I		IIPPI Y	VOLTA	GF (Va)						
PARAMETER	FROM	то	TEST	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.		1.2 ± (1.5 ± (св <i>)</i> 1.8 ± 0	.15 V	2.5 ± (0.2 V	3.3 ± ().3 V	UNIT
			CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	^	_	–40°C to 85°C	0.5	87	0.5	52	0.5	39	0.5	15	0.5	9	0.5	8	0.5	7	0.5	7	
Propagation	A	В	–40°C to 125°C	0.5	87	0.5	52	0.5	39	0.5	15	0.5	10	0.5	9	0.5	7	0.5	8	
t _{pd} delay	В	Α	–40°C to 85°C	0.5	51	0.5	33	0.5	23	0.5	15	0.5	12	0.5	10	0.5	7	0.5	7	ns
	Ь	_ ^	–40°C to 125°C	0.5	51	0.5	33	0.5	23	0.5	15	0.5	12	0.5	10	0.5	8	0.5	7	
		Α	–40°C to 85°C	0.5	22	0.5	22	0.5	22	0.5	22	0.5	22	0.5	22	0.5	22	0.5	22	
t _{dis} Disable time		_ ^	–40°C to 125°C	0.5	29	0.5	29	0.5	29	0.5	29	0.5	29	0.5	29	0.5	29	0.5	29	ns
t _{dis} Disable time	DID	B	–40°C to 85°C	0.5	137	0.5	98	0.5	74	0.5	24	0.5	18	0.5	16	0.5	13	0.5	13	115
	DIIX	DIR B	–40°C to 125°C	0.5	137	0.5	98	0.5	78	0.5	30	0.5	23	0.5	21	0.5	17	0.5	16	
	DIR	Α	–40°C to 85°C	0.5	240	0.5	185	0.5	157	0.5	45	0.5	36	0.5	33	0.5	26	0.5	29	
t _{en} Enable time	DIIX		–40°C to 125°C	0.5	265	0.5	193	0.5	164	0.5	51	0.5	41	0.5	37	0.5	30	0.5	32	ns
	DIR	В	–40°C to 85°C	0.5	115	0.5	80	0.5	67	0.5	43	0.5	37	0.5	36	0.5	35	0.5	35]
	DIIX	۵	–40°C to 125°C	0.5	121	0.5	86	0.5	73	0.5	49	0.5	44	0.5	43	0.5	41	0.5	42	

Table 6-5. Switching Characteristics, $V_{CCA} = 1.5 \text{ V}$

								O i i a i a i				1.0 1								
									B-I	PORT S	UPPLY	VOLTA	GE (V _C	св)						
PARAMETER	FROM	то	TEST	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ± (0.1 V	1.5 ± ().1 V	1.8 ± 0	.15 V	2.5 ± (0.2 V	3.3 ± 0).3 V	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Α	В	–40°C to 85°C	0.5	83	0.5	42	0.5	28	0.5	12	0.5	8	0.5	7	0.5	5	0.5	5	
↓ Propagation	_ ^		–40°C to 125°C	0.5	83	0.5	42	0.5	28	0.5	12	0.5	9	0.5	8	0.5	6	0.5	6	
t _{pd} delay	В	Α	–40°C to 85°C	0.5	50	0.5	28	0.5	18	0.5	10	0.5	8	0.5	7	0.5	5	0.5	4	ns
	Ь	^	–40°C to 125°C	0.5	50	0.5	28	0.5	18	0.5	10	0.5	9	0.5	8	0.5	6	0.5	5	
	DIR A	_	–40°C to 85°C	0.5	15	0.5	15	0.5	15	0.5	15	0.5	15	0.5	15	0.5	15	0.5	15	
t _{dis} Disable time		–40°C to 125°C	0.5	20	0.5	20	0.5	20	0.5	20	0.5	20	0.5	20	0.5	20	0.5	20	ns	
t _{dis} Disable time	DIB	В	–40°C to 85°C	0.5	136	0.5	96	0.5	72	0.5	22	0.5	16	0.5	14	0.5	11	0.5	11	115
	DIK	DIR B	–40°C to 125°C	0.5	136	0.5	96	0.5	76	0.5	29	0.5	21	0.5	19	0.5	15	0.5	14	
	DIR	Α	–40°C to 85°C	0.5	238	0.5	178	0.5	151	0.5	38	0.5	30	0.5	28	0.5	22	0.5	24	
t _{en} Enable time —	DIK	^	–40°C to 125°C	0.5	263	0.5	186	0.5	157	0.5	44	0.5	36	0.5	33	0.5	26	0.5	27	ns
	DIR	В	–40°C to 85°C	0.5	104	0.5	63	0.5	49	0.5	33	0.5	29	0.5	28	0.5	26	0.5	26	115
	DIR		–40°C to 125°C	0.5	109	0.5	68	0.5	54	0.5	38	0.5	35	0.5	34	0.5	32	0.5	32	

Table 6-6. Switching Characteristics, V_{CCA} = 1.8 V

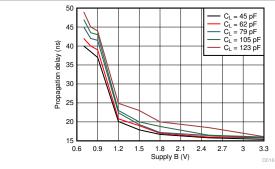
									R_I		LIPPI Y	VOLTA	GF (Va	on)						
PARAMETER	FROM	то	TEST CONDITIONS	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.		1.2 ±		1.5 ±		1.8 ± 0	.15 V	2.5 ± (0.2 V	3.3 ± 0).3 V	UNIT
			COMBINIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Α	В	–40°C to 85°C	0.5	81	0.5	41	0.5	24	0.5	10	0.5	7	0.5	6	0.5	5	0.5	4	
Propagation	_ A		–40°C to 125°C	0.5	81	0.5	41	0.5	24	0.5	10	0.5	8	0.5	7	0.5	5	0.5	5	
t _{pd} delay	В	Α	–40°C to 85°C	0.5	53	0.5	26	0.5	16	0.5	8	0.5	7	0.5	6	0.5	5	0.5	4	ns
	Ь	^	–40°C to 125°C	0.5	53	0.5	26	0.5	16	0.5	9	0.5	7	0.5	7	0.5	5	0.5	4	
	DIR	Α	–40°C to 85°C	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	
t _{dis} Disable time		^	–40°C to 125°C	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	0.5	18	ns
t _{dis} Disable time	DIB	B	–40°C to 85°C	0.5	136	0.5	96	0.5	72	0.5	22	0.5	15	0.5	14	0.5	11	0.5	11	115
	DIIX	DIR B	–40°C to 125°C	0.5	136	0.5	96	0.5	75	0.5	28	0.5	20	0.5	18	0.5	14	0.5	13	
	DIR A	Α	–40°C to 85°C	0.5	241	0.5	176	0.5	148	0.5	35	0.5	28	0.5	26	0.5	21	0.5	24	
t _{en} Enable time	Diix	_ ^	–40°C to 125°C	0.5	266	0.5	184	0.5	155	0.5	42	0.5	33	0.5	32	0.5	24	0.5	26	l ne
	DIR	В	–40°C to 85°C	0.5	101	0.5	61	0.5	44	0.5	30	0.5	27	0.5	26	0.5	25	0.5	24	ns
	DIIX		–40°C to 125°C	0.5	105	0.5	65	0.5	48	0.5	34	0.5	32	0.5	31	0.5	29	0.5	29	

Table 6-7. Switching Characteristics, V_{CCA} = 2.5 V

					• • • •	• • • • • • • • • • • • • • • • • • • •	9	Cilaia		· · ·										
									B-I	PORT S	UPPLY	VOLTA	GE (V _C	св)						
PARAMETER	FROM	то	TEST CONDITIONS	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ±	0.1 V	1.5 ±	0.1 V	1.8 ± 0	.15 V	2.5 ± (0.2 V	3.3 ± 0).3 V	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Α	В	–40°C to 85°C	0.5	80	0.5	40	0.5	22	0.5	7	0.5	5	0.5	5	0.5	4	0.5	4	
Propagation	_ A	В	–40°C to 125°C	0.5	80	0.5	40	0.5	22	0.5	8	0.5	6	0.5	5	0.5	5	0.5	4	1 1
t _{pd} delay	В	Α	–40°C to 85°C	0.5	66	0.5	27	0.5	15	0.5	7	0.5	5	0.5	5	0.5	4	0.5	3	ns
	В		–40°C to 125°C	0.5	66	0.5	27	0.5	15	0.5	7	0.5	6	0.5	5	0.5	5	0.5	4	
	DIR A	۸	–40°C to 85°C	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	0.5	10	
t _{dis} Disable time		–40°C to 125°C	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	0.5	13	ns	
t _{dis} Disable time	NID	В	–40°C to 85°C	0.5	136	0.5	95	0.5	71	0.5	21	0.5	14	0.5	13	0.5	10	0.5	10	
	DIR B	–40°C to 125°C	0.5	136	0.5	95	0.5	75	0.5	27	0.5	20	0.5	17	0.5	13	0.5	12		
	DIR A	А	–40°C to 85°C	0.5	254	0.5	176	0.5	147	0.5	33	0.5	25	0.5	24	0.5	19	0.5	22	
t _{en} Enable time	DIK	_ ^	–40°C to 125°C	0.5	278	0.5	185	0.5	153	0.5	39	0.5	31	0.5	29	0.5	23	0.5	25	ns
t _{en} Enable time	DIR	В	–40°C to 85°C	0.5	99	0.5	55	0.5	41	0.5	22	0.5	24	0.5	20	0.5	23	0.5	19	
	DIR		–40°C to 125°C	0.5	98	0.5	58	0.5	40	0.5	26	0.5	24	0.5	23	0.5	23	0.5	22	

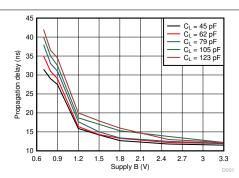
Table 6-8. Switching Characteristics, $V_{CCA} = 3.3 \text{ V}$

										B-F	PORT S	UPPLY	VOLTA	GE (V _C	св)						
P.	ARAMETER	FROM	то	TEST	0.7 ± 0	.05 V	0.8 ± 0	.04 V	0.9 ± 0.	045 V	1.2 ±	0.1 V	1.5 ±	0.1 V	1.8 ± 0	.15 V	2.5 ± (0.2 V	3.3 ± 0).3 V	UNIT
					MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
		Α	В	–40°C to 85°C	0.5	79	0.5	39	0.5	22	0.5	7	0.5	4	0.5	4	0.5	3	0.5	3	
	Propagation	A	В	–40°C to 125°C	0.5	79	0.5	39	0.5	22	0.5	7	0.5	5	0.5	4	0.5	4	0.5	4	ns
t _{pd}	delay B	Α	–40°C to 85°C	0.5	144	0.5	36	0.5	18	0.5	7	0.5	5	0.5	4	0.5	4	0.5	3	115	
		Ь	_ ^	–40°C to 125°C	0.5	144	0.5	36	0.5	18	0.5	8	0.5	6	0.5	5	0.5	4	0.5	4	
	A. Disable time	DIR	Α	–40°C to 85°C	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	0.5	9	
			_ ^	–40°C to 125°C	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	0.5	12	ns
t _{dis}	Disable time	DID	В	–40°C to 85°C	0.5	136	0.5	95	0.5	71	0.5	21	0.5	14	0.5	12	0.5	10	0.5	10	115
		DIIX	DIR B	–40°C to 125°C	0.5	136	0.5	95	0.5	75	0.5	27	0.5	19	0.5	17	0.5	13	0.5	12	
	t _{en} Enable time	DIR	А	–40°C to 85°C	0.5	331	0.5	185	0.5	149	0.5	33	0.5	25	0.5	23	0.5	19	0.5	22	
		DIIX		–40°C to 125°C	0.5	356	0.5	93	0.5	156	0.5	40	0.5	31	0.5	29	0.5	22	0.5	24	ne
^t en		DIR	В	–40°C to 85°C	0.5	98	0.5	58	0.5	41	0.5	26	0.5	23	0.5	23	0.5	22	0.5	22	ns
		DIK		–40°C to 125°C	0.5	99	0.5	59	0.5	42	0.5	27	0.5	25	0.5	24	0.5	24	0.5	24	



6.7 Operating Characteristics: $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN TYP	MAX	UNIT
			0.7 V	0.7 V	1.3		
			0.8 V	0.8 V	1.3		
			0.9 V	0.9 V	1.3		
	Power Dissipation Capacitance	C _L = 0, R _L = Open f = 1	1.2 V	1.2 V	1.3		
	per transceiver (A to B)	MHz, $t_r = t_f = 1 \text{ ns}$	1.5 V	1.5 V	1.3		pF
			1.8 V	1.8 V	1.4		
			2.5 V	2.5 V	1.7		
			3.3 V	3.3 V	2.1		
C _{pdA}			0.7 V	0.7 V	9.2		
			0.8 V	0.8 V	9.4		
			0.9 V	0.9 V	9.4		
	Power Dissipation Capacitance	C _L = 0, R _L = Open f = 1	1.2 V	1.2 V	9.8		, F
	per transceiver (B to A)	MHz, $t_r = t_f = 1$ ns	1.5 V	1.5 V	10.1		pF
			1.8 V	1.8 V	11.0		
			2.5 V	2.5 V	14.4		
			3.3 V	3.3 V	18.6		
			0.7 V	0.7 V	9.2		
			0.8 V	0.8 V	9.3		
			0.9 V	0.9 V	9.4		
	Power Dissipation Capacitance	C _L = 0, R _L = Open f = 1	1.2 V	1.2 V	9.7		
	per transceiver (A to B)	MHz, $t_r = t_f = 1$ ns	1.5 V	1.5 V	10.1		pF
			1.8 V	1.8 V	11.0		
			2.5 V	2.5 V	14.4		
			3.3 V	3.3 V	18.3		
C _{pdB}			0.7 V	0.7 V	1.3		
			0.8 V	0.8 V	1.3		
			0.9 V	0.9 V	1.3		
	Power Dissipation Capacitance	C _L = 0, R _L = Open f = 1	1.2 V	1.2 V	1.3		nE
	per transceiver (B to A)	MHz , $t_r = t_f = 1$ ns	1.5 V	1.5 V	1.3		pF
			1.8 V	1.8 V	1.4		
			2.5 V	2.5 V	1.7		
			3.3 V	3.3 V	2.1		



6.8 Typical Characteristics

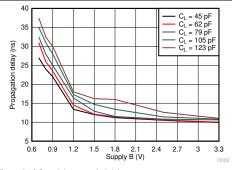
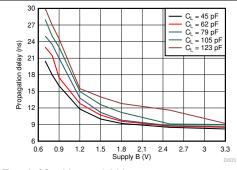
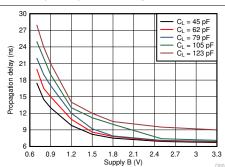

 $T_A = 25$ °C $V_{CCA} = 0.7 V$

Figure 6-1. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance



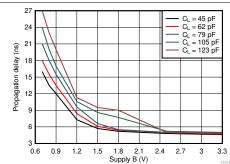
 $T_A = 25$ °C $V_{CCA} = 0.8 V$

Figure 6-2. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance



 $T_A = 25^{\circ}C$ $V_{CCA} = 0.9 V$

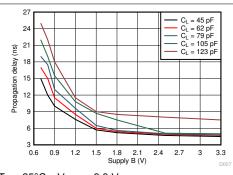
 $T_A = 25^{\circ}C$ $V_{CCA} = 1.2 \text{ V}$


Figure 6-3. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance

 $T_A = 25^{\circ}C \quad V_{CCA} = 1.5 \text{ V}$

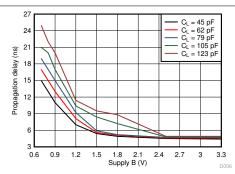
Figure 6-5. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance

 $T_A = 25^{\circ}C$ $V_{CCA} = 1.8 \text{ V}$


Figure 6-6. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated



6.8 Typical Characteristics (continued)

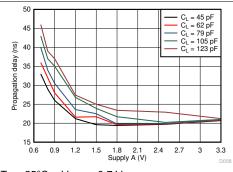
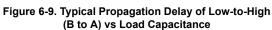

 $T_A = 25^{\circ}C \quad V_{CCA} = 3.3 \text{ V}$

Figure 6-7. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance



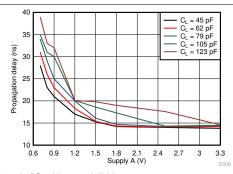
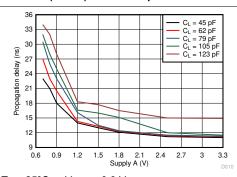

 $T_A = 25^{\circ}C$ $V_{CCA} = 2.5 \text{ V}$

Figure 6-8. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance


 $T_A = 25^{\circ}C$ $V_{CCA} = 0.7 V$

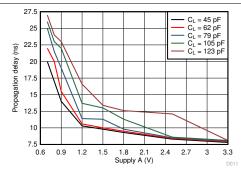

 $T_A = 25^{\circ}C \quad V_{CCA} = 0.8 \text{ V}$

Figure 6-10. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance

 $T_A = 25^{\circ}C$ $V_{CCA} = 0.9 V$

Figure 6-11. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance

 $T_A = 25^{\circ}C$ $V_{CCA} = 1.2 \text{ V}$

Figure 6-12. Typical Propagation Delay of Low-to-High (B to A) vs Load Capacitance

6.8 Typical Characteristics (continued)

Figure 6-15. Typical Propagation Delay of Low-to-High

(B to A) vs Load Capacitance

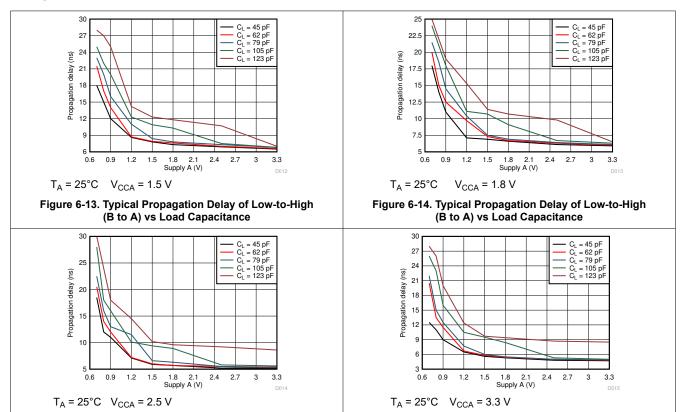
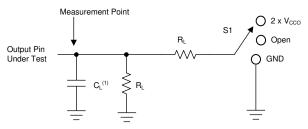


Figure 6-16. Typical Propagation Delay of Low-to-High

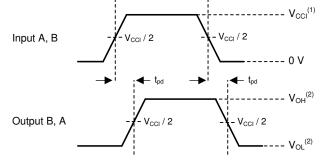

(B to A) vs Load Capacitance

7 Parameter Measurement Information

7.1 Load Circuit and Voltage Waveforms

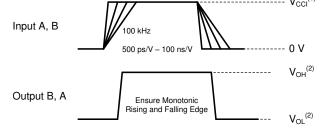
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- f = 1 MHz
- $Z_{O} = 50 \Omega$
- dv/dt ≤ 1 ns/V



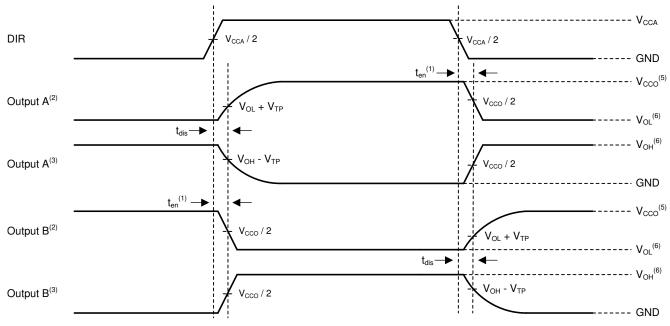
A. C_L includes probe and jig capacitance.

Figure 7-1. Load Circuit


Table 7-1. Load Circuit Conditions

	Parameter	V _{cco}	R _L	CL	S ₁	V _{TP}
Δt/Δν	Input transition rise or fall rate	0.65 V – 3.6 V	1 ΜΩ	15 pF	Open	N/A
		1.1 V – 3.6 V	2 kΩ	15 pF	Open	N/A
t _{pd}	Propagation (delay) time	0.65 V - 0.95 V	20 kΩ	15 pF	Open	N/A
		3 V – 3.6 V	2 kΩ	15 pF	2 × V _{CCO}	0.3 V
		1.65 V – 2.7 V	2 kΩ	15 pF	2 × V _{CCO}	0.15 V
t _{en} , t _{dis}	Enable time, disable time	1.1 V – 1.6 V	2 kΩ	15 pF	2 × V _{CCO}	0.1 V
		0.65 V – 0.95 V	20 kΩ	15 pF	2 × V _{CCO}	0.1 V
		3 V – 3.6 V	2 kΩ	15 pF	GND	0.3 V
		1.65 V – 2.7 V	2 kΩ	15 pF	GND	0.15 V
ten, tdis	Enable time, disable time	1.1 V – 1.6 V	2 kΩ	15 pF	GND	0.1 V
		0.65 V – 0.95 V	20 kΩ	15 pF	GND	0.1 V

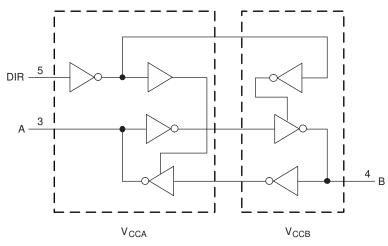
- 1. V_{CCI} is the supply pin associated with the input port.
- 2. V_{OH} and V_{OL} are typical output voltage levels that occur with specified R_L , C_L , and S_1


Figure 7-2. Propagation Delay

- 1. V_{CCI} is the supply pin associated with the input port.
- 2. V_{OH} and V_{OL} are typical output voltage levels that occur with specified R_L , C_L , and S_1

Figure 7-3. Input Transition Rise or Fall Rate

- 1. Illustrative purposes only. Enable Time is a calculation as described in the data sheet.
- 2. Output waveform on the condition that input is driven to a valid Logic Low.
- 3. Output waveform on the condition that input is driven to a valid Logic High.
- 4. V_{CCI} is the supply pin associated with the input port
- 5. V_{CCO} is the supply pin associated with the output port.
- 6. V_{OH} and V_{OL} are typical output voltage levels that occur with specified R_L , C_L , and S_1


Figure 7-4. Disable and Enable Time

8 Detailed Description

8.1 Overview

The SN74AXC1T45 is single-bit, dual-supply, noninverting voltage level translation. Pin A and the direction control pin are support by V_{CCA} and pin B is support by V_{CCB} . The A port can accept I/O voltages ranging from 0.65 V to 3.6 V, and the B port can accept I/O voltages from 0.65 V to 3.6 V. A high logic on the DIR pin allows data transmission from A to B and a logic low on the DIR pin allows data transmission from B to A.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 0.65-V to 3.6-V Power-Supply Range

Both the V_{CCA} and V_{CCB} pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V and 3.3 V).

8.3.2 Support High-Speed Translation

The SN74AXC1T45 device can support high data-rate applications. The translated signal data rate can be up to 500 Mbps when signal is translated from 1.8 V to 3.3 V.

8.3.3 I_{off} Supports Partial-Power-Down Mode Operation

The I_{off} circuit prevents backflow current by disabling the I/O output circuits when the device is in partial-power-down mode.

8.4 Device Functional Modes

Table 8-1 lists the device functions for the DIR input.

Table 8-1. Function Table

INPUT ⁽¹⁾ DIR	OPERATION
L	B data to A bus
Н	A data to B bus

 Input circuits of the data I/Os always are active.

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AXC1T45 device can be used in level-translation applications for interfacing devices or systems with one another when they are operating at different interface voltages. The maximum data rate can be up to 500 Mbps when the device translate signal is from 1.8 V to 3.3 V.

9.1.1 Enable Times

Calculate the enable times for the SN74AXC1T45 using the following formulas:

$$t_{A en}$$
 (DIR to A) = t_{dis} (DIR to B) + t_{pd} (B to A) (1)

$$t_{B en}$$
 (DIR to B) = t_{dis} (DIR to A) + t_{pd} (A to B) (2)

In a bidirectional application, these enable times provide the maximum delay time from the time the DIR bit is switched until an output is expected. For example, if the SN74AXC1T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled (t_{dis}) before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay (t_{pd}) . To avoid bus contention care should be taken to not apply an input signal prior to the output port being disabled (t_{dis}) max).

9.2 Typical Applications

9.2.1 Unidirectional Logic Level-Shifting Application

Figure 9-1 shows an example of the SN74AXC1T45 being used in a unidirectional logic level-shifting application.

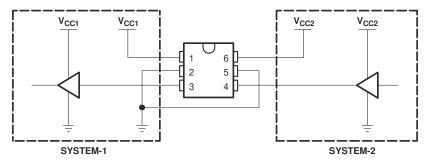


Figure 9-1. Unidirectional Logic Level-Shifting Application

Table 9-1. Unidirectional Level Shifting Function

PIN	NAME	FUNCTION	DESCRIPTION
1	V _{CCA}	V _{CC1}	SYSTEM-1 supply voltage (0.65 V to 3.6 V)
2	GND	GND	Device GND
3	Α	OUT	Output level depends on V _{CC1} voltage.
4	В	IN	Input threshold value depends on V _{CC2} voltage.
5	DIR	DIR	GND (low level) determines B-port to A-port direction.
6	V _{CCB}	V _{CC2}	SYSTEM-2 supply voltage (0.65 V to 3.6 V)

9.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 9-2.

Table 9-2. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
Input voltage range	0.65 V to 3.6 V
Output voltage range	0.65 V to 3.6 V

9.2.1.2 Detailed Design Procedure

To begin the design process, determine the following:

- · Input voltage range
 - Use the supply voltage of the device that is driving the SN74AXC1T45 device to determine the input voltage range. For a valid logic-high, the value must exceed the high-level input voltage (V_{IH}) of the input port. For a valid logic low the value must be less than the low-level input voltage (V_{IL}) of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AXC1T45 device is driving to determine the output voltage range.

9.2.1.3 Application Curve

Figure 9-2. Up Translation at 2.5 MHz (0.7 V to 3.3 V)

9.2.2 Bidirectional Logic Level-Shifting Application

Figure 9-3 shows the SN74AXC1T45 being used in a bidirectional logic level-shifting application. Because the SN74AXC1T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.

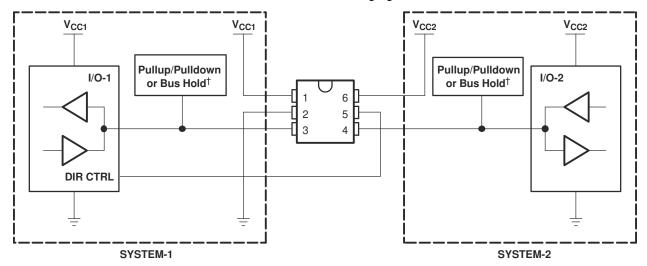


Figure 9-3. Bidirectional Logic Level-Shifting Application

Table 9-3 lists the data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to SYSTEM-1.

Table 9-3. Data Transmission: SYSTEM-1 and SYSTEM-2

STATE	DIR CTRL	I/O-1	I/O-2	DESCRIPTION
1	Н	Out	In	SYSTEM-1 data to SYSTEM-2.
2	Н	Hi-Z	Hi-Z	SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on pullup or pulldown resistors. ⁽¹⁾
3	L	Hi-Z	Hi-Z	DIR bit is flipped. I/O-1 and I/O-2 still are disabled. The bus-line state depends on pullup or pulldown resistors. ⁽¹⁾
4	L	In	Out	SYSTEM-2 data to SYSTEM-1.

⁽¹⁾ SYSTEM-1 and SYSTEM-2 must use the same conditions, essentially, both pullup or both pulldown.

9.2.2.1 Design Requirements

Refer to Design Requirements.

9.2.2.2 Detailed Design Procedure

Refer to Detailed Design Procedure.

9.2.2.3 Application Curve

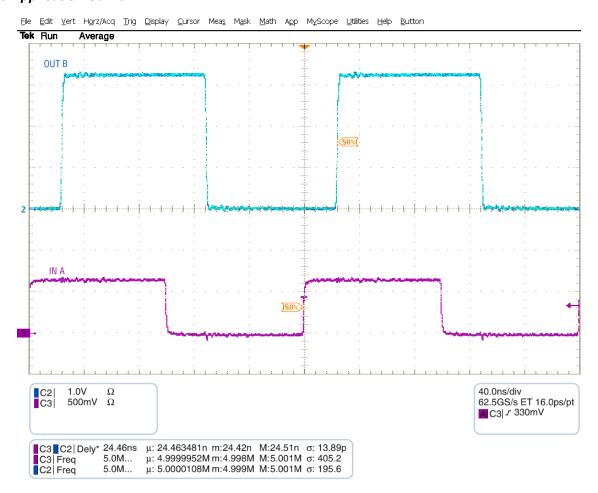


Figure 9-4. Up Translation at 2.5 MHz (0.7 V to 3.3 V)

10 Power Supply Recommendations

The SN74AXC1T45 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . The V_{CCA} power-supply rail accepts any supply voltage from 0.65 V to 3.6 V and the V_{CCB} power-supply rail accepts any supply voltage from 0.65 V to 3.6 V. The A port and B port are designed to track the V_{CCA} and V_{CCB} supplies respectively allowing for low-voltage, bidirectional translation between any of the 0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V voltage nodes.

10.1 Power-Up Considerations

A proper power-up sequence must be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:

- 1. Connect the ground before any supply voltage is applied.
- 2. Power up the V_{CCA} and V_{CCB} supplies. The V_{CCA} and V_{CCB} supplies can be ramped in any order.

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended:

- · Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements.

11.2 Layout Example

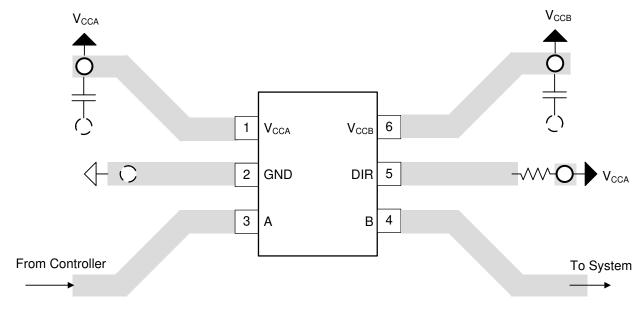


Figure 11-1. PCB Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Evaluate SN74AXC1T45DRL Using a Generic EVM application report
- Texas Instruments, Implications of Slow or Floating CMOS Inputs application report
- Texas Instruments, Power Sequencing for the AXC Family of Devices application report

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2021 Texas Instruments Incorporated

www.ti.com 24-Sep-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AXC1T45DBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	1GRL	Samples
SN74AXC1T45DCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	1A3	Samples
SN74AXC1T45DEAR	ACTIVE	X2SON	DEA	6	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CR	Samples
SN74AXC1T45DRLR	ACTIVE	SOT-5X3	DRL	6	4000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	1A1	Samples
SN74AXC1T45DTQR	ACTIVE	X2SON	DTQ	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	CW	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 24-Sep-2021

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AXC1T45:

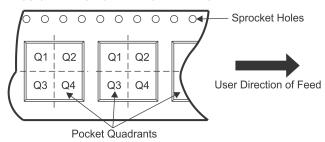
Automotive : SN74AXC1T45-Q1

NOTE: Qualified Version Definitions:

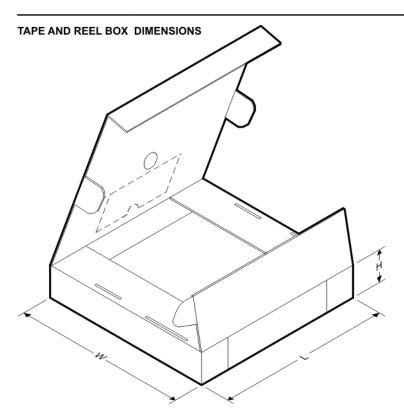
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Sep-2021


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AXC1T45DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
SN74AXC1T45DCKR	SC70	DCK	6	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74AXC1T45DEAR	X2SON	DEA	6	5000	180.0	9.5	1.13	1.13	0.5	4.0	8.0	Q3
SN74AXC1T45DRLR	SOT-5X3	DRL	6	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74AXC1T45DTQR	X2SON	DTQ	6	3000	180.0	9.5	0.94	1.13	0.5	2.0	8.0	Q2

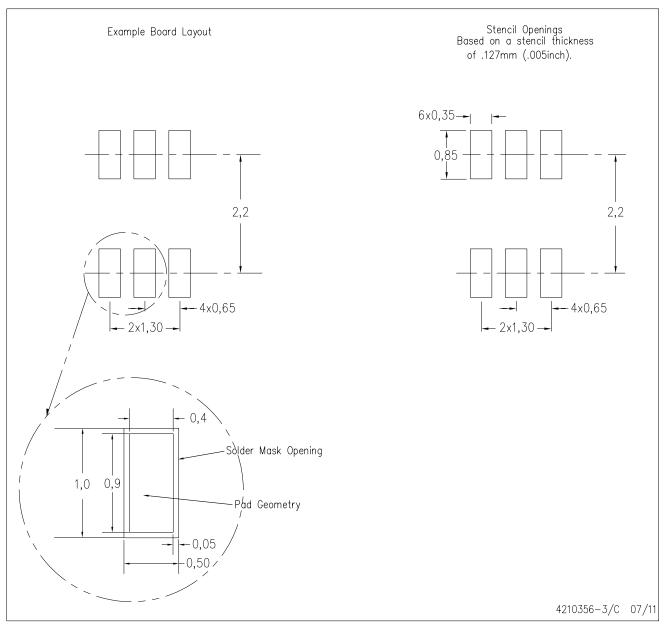
www.ti.com 24-Sep-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AXC1T45DBVR	SOT-23	DBV	6	3000	210.0	185.0	35.0
SN74AXC1T45DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74AXC1T45DEAR	X2SON	DEA	6	5000	189.0	185.0	36.0
SN74AXC1T45DRLR	SOT-5X3	DRL	6	4000	183.0	183.0	20.0
SN74AXC1T45DTQR	X2SON	DTQ	6	3000	189.0	185.0	36.0

DCK (R-PDSO-G6)

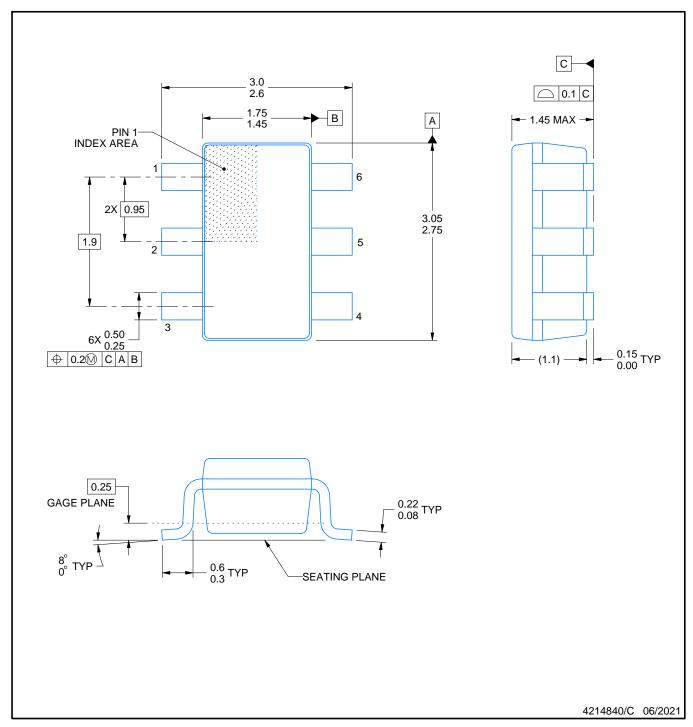
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

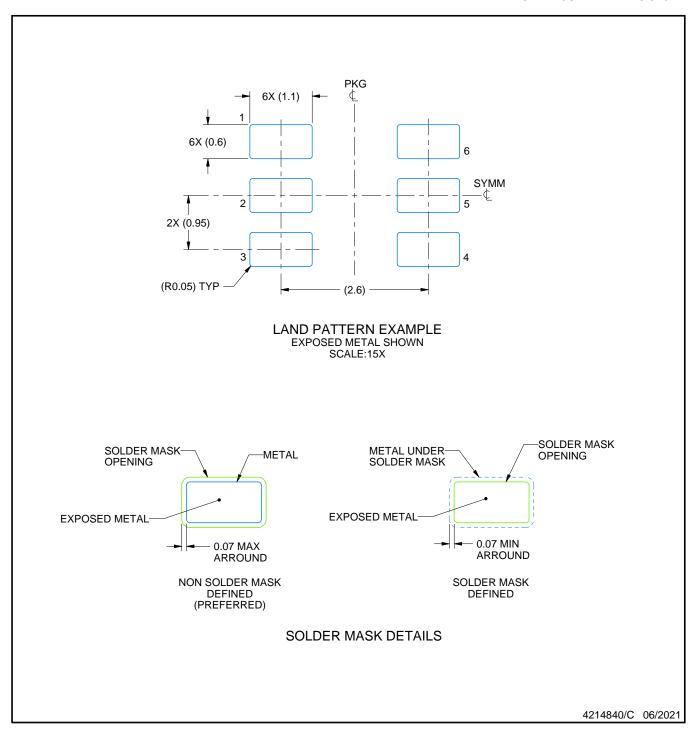

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.

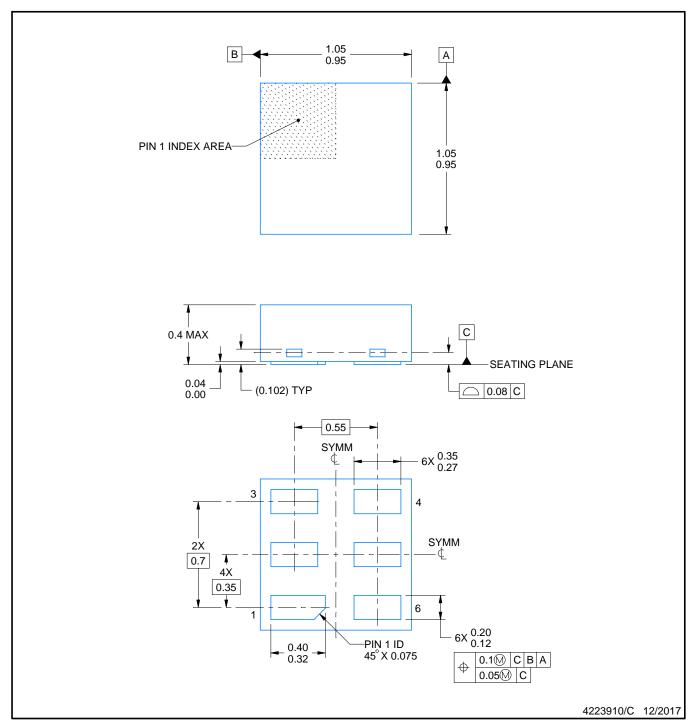
SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

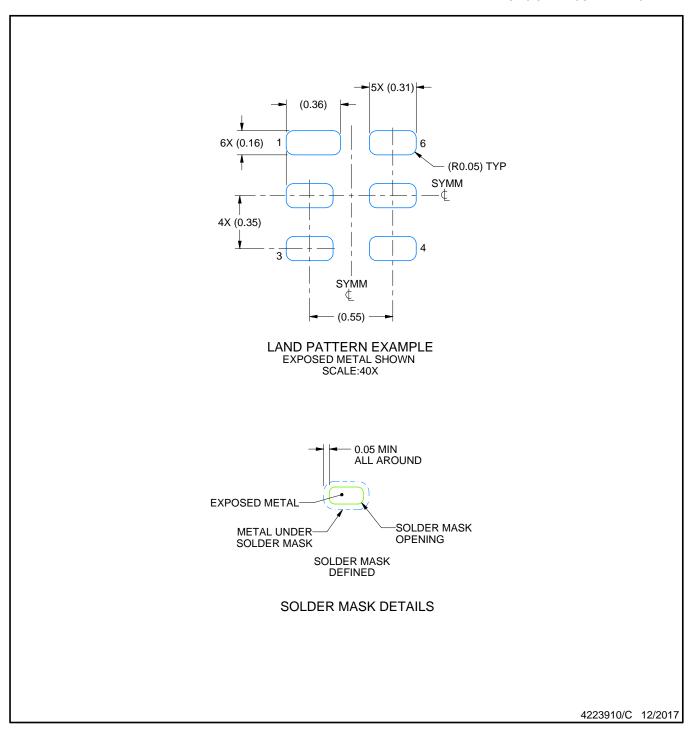
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

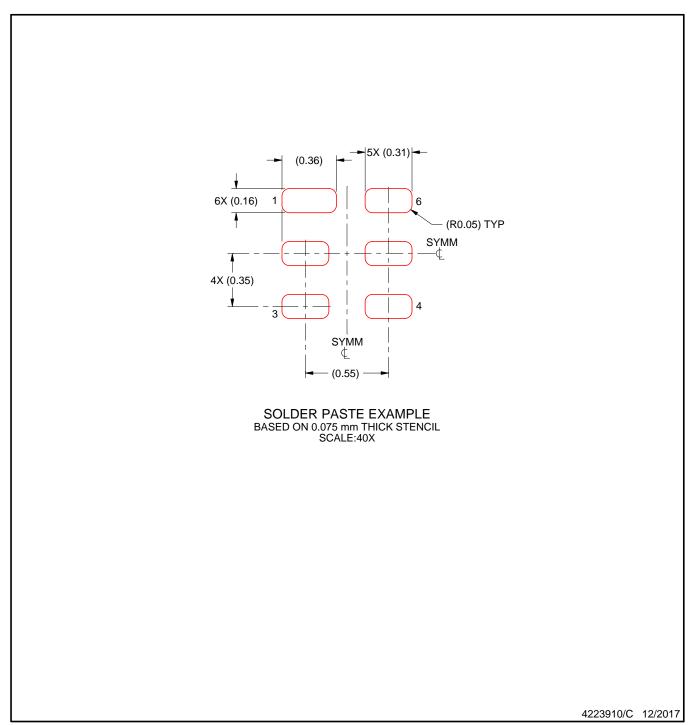
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



NOTES:

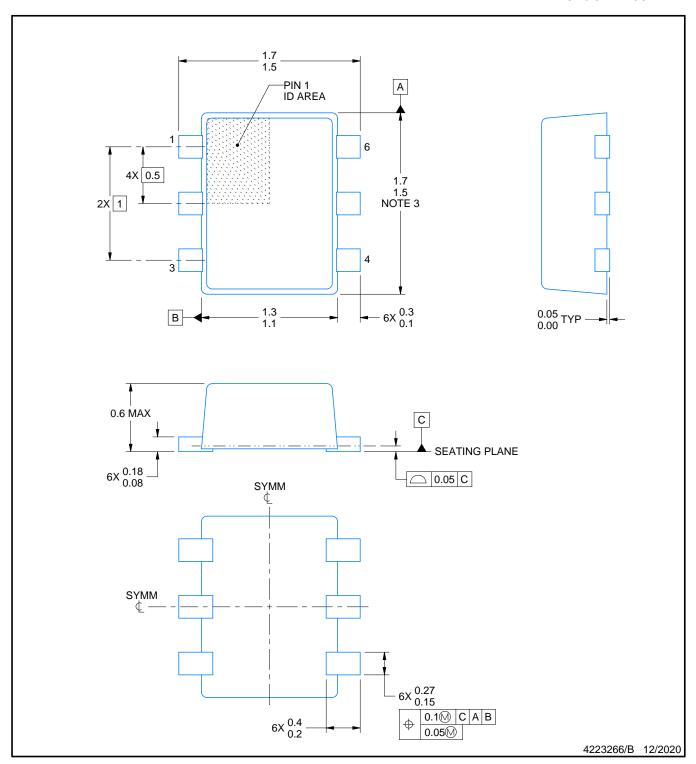
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.



NOTES: (continued)

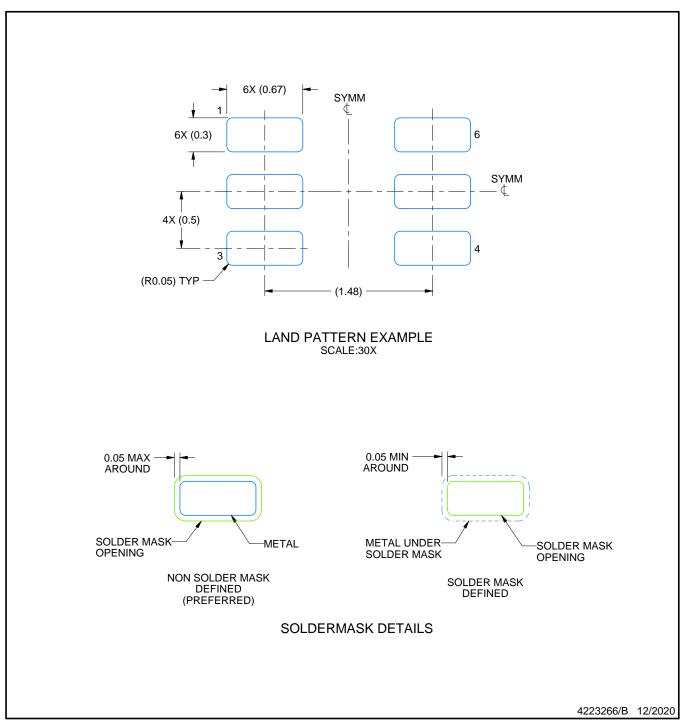
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PLASTIC SMALL OUTLINE

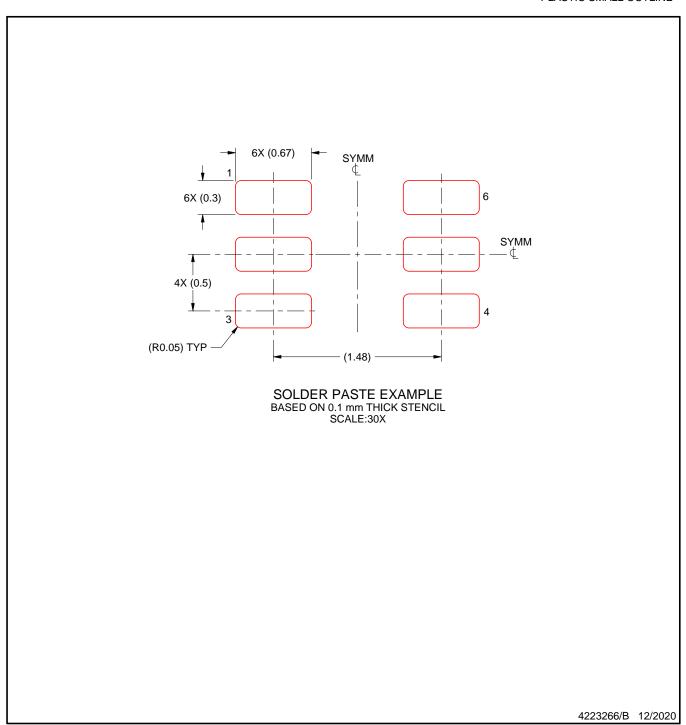
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-293 Variation UAAD

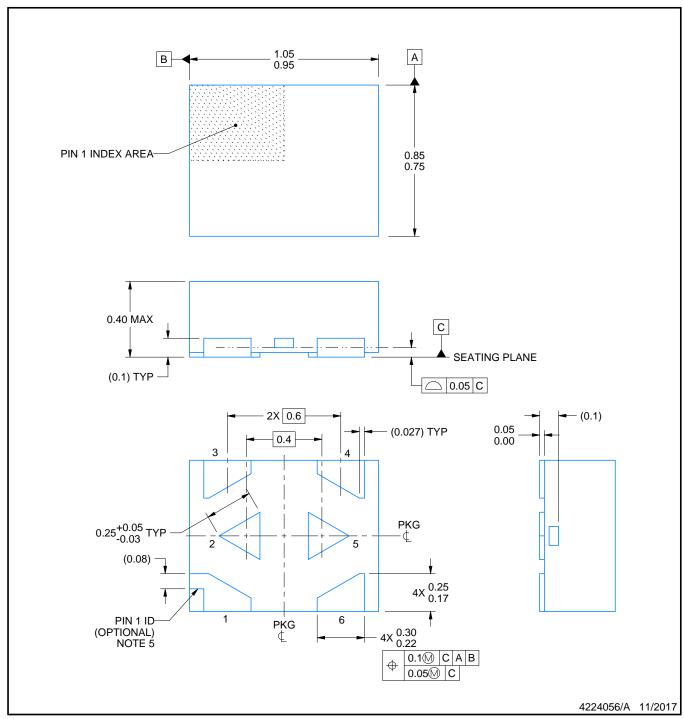
PLASTIC SMALL OUTLINE



NOTES: (continued)

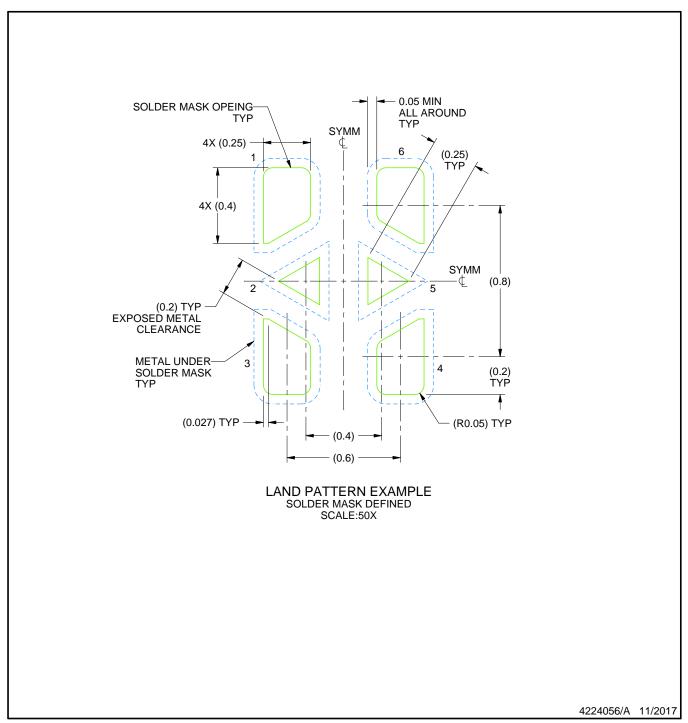
- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE



NOTES: (continued)

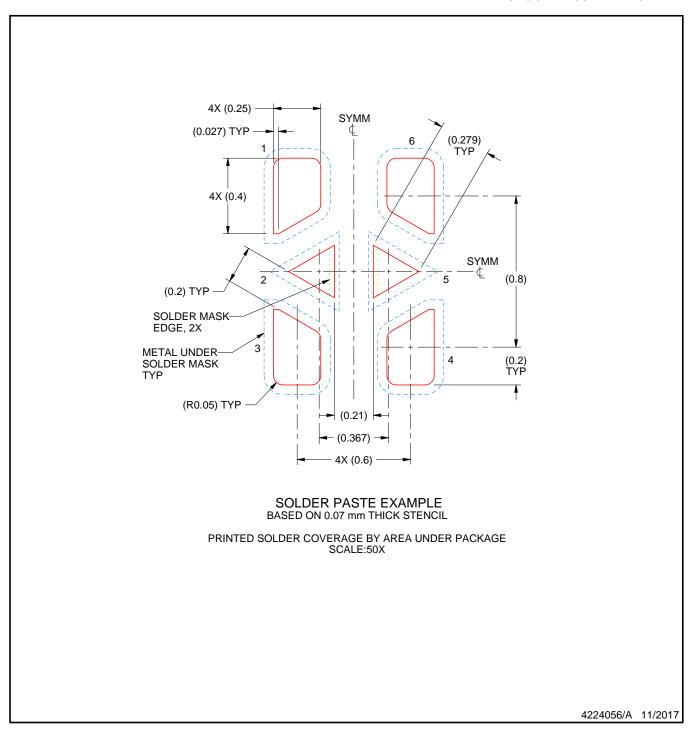
- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.

 4. The size and shape of this feature may vary.
- 5. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.



NOTES: (continued)

^{6.} This package is designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

^{7.} Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated